Условная вероятность события формула. Условные вероятности

Рассмотрим задачу. Студент перед экзаменом выучил из 30 билетов билеты с номерами с 1 по 5 и с 26 по 30. Известно, что студент на экзамене вытащил билет с номером, не превышающим 20. Какова вероятность, что студент вытащил выученный билет?

Определим пространство элементарных исходов: W=(1,2,3,...,28,29,30). Пусть событие А заключается в том, чтостудент вытащил выученный билет: А = (1,...,5,26,...,30,), а событие В - в том, что студент вытащил билет из первых двадцати: В = (1,2,3,...,20)

Событие состоит из пяти исходов: (1,2,3,4,5), и его вероятность равна 5/30. Это число можно представить как произведение дробей 5/20 и 20/30. Число 20/30 – это вероятность события B . Число 5/20 можно рассматривать как вероятность события А при условии, что событие В произошло (обозначим её Р (А /В )). Таким образом, решение задачи определяется формулой

Р (А /В ) = P (А ÇВ ) /Р (B ) (2)

Р (А /В ) называется условной вероятностью события A при условии, что событие В произошло . Формулу (2) можно рассматривать, как определение условной вероятности . Эту же формулу можно переписать в виде

P (А ÇВ ) = Р (А /В )Р (B )(3)

Формула (3) называется формулой умножения вероятностей или теоремой умножения вероятностей, а условная вероятность Р (А /В ) здесь должна восприниматься просто по смыслу.

Пример 2 . Из урны, содержащей 7 белых и 3 черных шаров, наудачу один за другим извлекают (без возвращения) два шара. Какова вероятность того, что первый шар будет белым, а второй черным?

Пусть X – событие, состоящее в извлечении первым белого шара, а Y - событие, состоящее в извлечении вторым черного шара. Тогда событие, заключающееся в том, что первый шар будет белым, а второй - черным. P (Y /X ) =3/9 =1/3 - условная вероятность извлечения вторым черного шара, если первым был извлечен белый. Учитывая, что P (X ) = 7/10, по формуле умножения вероятностей получаем: P () = 7/30

Событие А называется независимым от события В (иначе: события А и В называются независимыми), если Р (А /В )=Р (А ). За определение независимых событий можно принять следствие последней формулы и формулы умножения

P (А ÇВ ) = Р (А ) Р (B )

Докажите самостоятельно, что если А и В - независимые события, то и тоже являются независимыми событиями.

Пример 3 . Найти вероятность того, что при трёх бросках игральной кости три раза выпадет шестёрка. Очевидно, что при каждом броске результат не зависит от результатов предыдущих бросков, и искомая вероятность равна (1/6) 3 = 1/216.

Пример 4 . Определим в условиях этой задачи вероятность того, что при трёх бросках в сумме выпало 4 очка. Выпишем благоприятные исходы: “1–1–2”, “1–2–1”, “2–1–1”. Вероятность каждого из этих исходов равна 1/216. Так как все эти исходы несовместимы, интересующая нас вероятность будет равна 3/216 = 1/72.



Пример 5 . Из колоды карт в 32 листа извлекается одна карта. Пусть А – событие, состоящее в том, что извлечённая карта – дама. Событие В состоит в том, что извлечённая карта пиковой масти. Очевидно, что Р (А ) = 4/32 = 1/8. Вычислим величину вероятность того, что извлечённая карта –дама при условии, что эта карта пиковой масти, то есть Р (А/В ). Очевидно, что Р (А ÇВ ) = 1/32, и Р (В ) = 8/32. Тогда Р (А/В ) = Р (А ÇВ )/ Р (В ) = 1/8, то есть Р (А ) = Р (А/В ). Отсюда следует, что события А и В независимы.

Пусть событие С заключается в том, что извлечённая карта не туз. Покажем, что события А и С зависимы. Очевидно, что Р (А ÇС ) = Р (А ) = 1/8. Р (С ) = 28/32 = 7/8. Отсюда получаем Р (А/С ) = 1/7, и это не равно величине Р (А ), следовательно, события А и С зависимы.

Пример 6 . Рассмотрим задачу, аналогичную задаче из примера 2, но с одним дополнительным условием: вытащив первый шар, запоминаем его цвет и возвращаем шар в урну, после чего все шары перемешиваем. В данном случае результат второго извлечения никак не зависит от того, какой шар – черный или белый появился при первом извлечении. Вероятность появления первым белого шара (событие А ) равна 7/10. Вероятность события В – появления вторым черного шара – равна 3/10. Теперь формула умножения вероятностей дает: P (А ÇВ ) = 21/100.

Извлечение шаров способом, описанным в этом примере, называется выборкой с возвращением или возвратной выборкой.

Следует отметить, что если в задаче с шарами положить количество белых и черных шаров равным соответственно 7000 и 3000, то результаты расчетов тех же вероятностей будут отличаться пренебрежимо мало для возвратной и безвозвратной выборок.

Рассмотрим задачи на применение теорем сложения и умножения вероятностей.

1. Три стрелка стреляют в мишень. Каждый попадает в мишень или не попадает в мишень независимо от результатов выстрелов остальных стрелков. Первый стрелок попадает в мишень с вероятностью 0,9, второй – с вероятностью 0,8, а третий – с вероятностью 0,7. Найти вероятность того, что мишень будет поражена?

Вопрос можно поставить иначе: какова вероятность того, что хотя бы один стрелок попадёт в мишень? Очевидно, что мишень будет поражена, если все трое попадут в мишень, если в мишень попадут любые двое стрелков, а третий не попадёт и т. д. Пусть событие А состоит в том, что хотя бы один из стрелков попал в мишень. Тогда противоположное событие заключается в том, что все трое не попали в мишень . Если первый не попадает в мишень с вероятностью 0,1, второй – с вероятностью 0,2, а третий – с вероятностью 0,3, то по теореме умножения вероятностей Р() = 0,1×0,2×0,3 = 0,006. Тогда Р(А) = 1 – Р() = 0,994.

2. При включении двигатель начинает работать с вероятностью р . а) Найти вероятность того, что двигатель начнёт работать со второго включения.

б) Найти вероятность того, что для запуска двигателя потребуется не более двух включений.

а) Для того, чтобы двигатель начал работать со второго включения, нужно, во-первых, чтобы он не запустился при первом включении (событие А ). Это происходит с вероятностью 1 – р . При втором включении двигатель запустится (событие В ) с вероятностью р . Нас интересует вероятность события А ÇВ . Из условия задачи можно понять, что события А и В независимы. Отсюда P (А ÇВ ) = р (1 – р ).

б) Нас интересует вероятность события, состоящего в том, что двигатель запустится при первом включении или при втором включении. Противоположное событие заключается в том, что двигатель не запустится ни при первом, ни при втором включении. Вероятность этого противоположного события равна (1 – р ) 2 . Отсюда вероятность интересующего нас события равна 1 – (1 – р ) 2 .

3 . В семье Ивановых 4 ребёнка. Известно, что один из детей – мальчик. Найти вероятность того, что все дети – мальчики. Принять вероятность рождения мальчика и вероятность рождения девочки равными 1/2 и не зависящими от того, какого пола дети уже имеются в семье.

Пусть событие В состоит в том, что все дети в семье – мальчики, событие А состоит в том, что в семье есть хотя бы один мальчик (именно так мы должны понимать условие задачи). Нас интересует величина Р (В/А ). Для того, чтобы воспользоваться формулой условной вероятности, надо, во-первых, вычислить P (А ÇВ ). В нашем случае событие А является следствием события В , поэтому P (А ÇВ ) = Р (В ) (смотри объяснение к теме 2). По условию задачи Р (В ) = (1/2) 4 = 1/16. Чтобы вычислить Р (А ), заметим, что событие состоит в том, что все дети в семье –девочки. Очевидно, что Р () = (1/2) 4 = 1/16. Тогда Р (А ) = 1 – Р () = 15/16. Теперь можно воспользоваться формулой для определения условной вероятности Р (В /А ) = P (А ÇВ )/Р (А ). В результате получается Р (В /А ) = (1/16)/(15/16) = 1/15.

Если бы в условии этой задачи был поставлен вопрос “чему равна вероятность того, что все дети мальчики, при условии, что второй ребёнок – мальчик?”, то ответ был бы 1/8.

4 . В урне семь белых и три чёрных шара. Без возвращения извлекаются три шара. Известно, что среди них есть чёрный шар. Найти вероятность того, что другие два шара белые.

Пусть событие А состоит в том, что в выборке есть два белых шара, событие В – в том, что в выборке есть чёрный шар. Всего в условии задачи существует возможных исходов. Отсюда Р (А ÇВ ) = . Чтобы вычислить вероятность Р (В ), заметим, что состоит в том, что все извлечённые шары белые, и Р () = . Искомая вероятность равна ()/(1 – ) = 63/85.

5. Студент знает 20 из 25 вопросов программы. Зачёт сдан, если студент ответит не менее чем на 3 из 4-х вопросов в билете. Взглянув на первый вопрос, студент обнаружил, что знает его. Какова вероятность, что студент сдаст зачёт?

Пусть А - событие, заключающееся в том, что студент сдал экзамен;

В - событие, заключающееся в том, что студент знает первый вопрос в билете.

Очевидно, что Р (В ) =20/25 = 4/5. Теперь необходимо определить вероятность Р (А ÇВ ). Из двадцати пяти вопросов можно составить различных билетов, содержащих четыре вопроса. Все билеты, выбор которых удовлетворял бы и событию А, и событию В , должны быть составлены следующим образом: либо студент знает все вопросы билета (можно составить всего таких билетов), либо студент знает первый, второй и третий вопросы, но не знает четвёртого (можно составить всего 5таких билетов), либо студент знает первый, второй и четвёртый вопросы, но не знает третьего (тоже 5билетов), либо студент знает первый, третий и четвёртый вопросы, но не знает второго (тоже 5билетов). Отсюда получаем, что

Р (А ÇВ ) =

Осталось только найти искомую вероятность р (А/В):

Р (А/В) =

Задачи для самостоятельного решения.

1) . Вероятность попасть в самолёт равна 0,4, вероятность его сбить равна 0,1. Найти вероятность того, что при попадании в самолёт он будет сбит.

2) . Из урны, содержащей 6 белых и 4 чёрных шара, наудачу извлекают по одному шару до появления чёрного шара. Найти вероятность того, что придётся производить четвёртое извлечение, если выборка производится а) с возвращением; б) без возвращения.

3) а) В условиях задачи 1 найти вероятность того, что в мишень попали двое стрелков. б) В условиях задачи 1 найти вероятность того, что в мишень попали не менее двух стрелков.

4) По самолёту производится три выстрела. Вероятность попадания при первом выстреле равна 0,5, при втором – 0,6, при третьем – 0,8. При одном попадании самолёт будет сбит с вероятностью 0,3, при двух – с вероятностью 0,6, при трёх самолёт будет сбит наверняка. Какова вероятность того, что самолёт будет сбит?

5) Вероятность того, что случайным образом выбранный из студенческой группы студент знает английский язык, равна 5/6. Вероятность того, что студент знает французский язык, равна 7/12. Вероятность того, что студент знает и английский и французский языки, равна 1/2. а) Найти вероятность того, что студент не знает французского языка при условии, что он не знает английского. б) Найти вероятность того, что студент знает французский язык при условии, что он знает английский.

Ответы. 1)1/4; 2) а) 0,216; б) 1/6; 3) а) 0,398; б) 0,902; 4) 0,594; 5) а) 0,5; б) 0,3.

Мы уже говорили, что в основе определения вероятности события лежит некоторая совокупность условий. Если никаких ограничений, кроме условий, при вычислении вероятности не налагается, то такие вероятности называются безусловными.

Однако в ряде случаев приходится находить вероятности событий при дополнительном условии, что произошло некоторое событие В, имеющее не нулевую вероятность, т.е. Данные вероятности мы будем называть условными и обозначать символом; это означает вероятность события А при условии, что событие В произошло.

Пример 1. Брошены две игральные кости. Чему равна вероятность того, что сумма выпавших на них очков равна 8 (событие A), если известно, что эта сумма есть четное число (событие В)?

Все возможные случаи, которые могут представиться при бросании двух костей, мы запишем в таблице 1.7.1, каждая клетка которой содержит запись возможного события: на первом месте в скобках указывается число очков, выпавших на первой кости, на втором месте -- число очков, выпавших на второй кости.

Общее число возможных случаев -- 36, благоприятствующих событию A -- 5. Таким образом, безусловная вероятность.

Если событие В произошло, то осуществилась одна из 18 (а не 36) возможностей и, следовательно, условная вероятность равна.

Пример 2. Из колоды карт последовательно вынуты две карты. Найти: а) безусловную вероятность того, что вторая карта окажется тузом (неизвестно, какая карта была вынута вначале), и б) условную вероятность, что вторая карта будет тузом, если первоначально был вынут туз.

Обозначим через A событие, состоящее в появлении туза на втором месте, а через В--событие, состоящее в появлении туза на первом месте. Ясно, что имеет место равенство.

В силу несовместимости событий АВ и АВ имеем:

При вынимании двух карт из колоды в 36 карт могут произойти 36*35 (учитывая порядок!) случаев. Из них благоприятствующих событию АВ -- 4*3 случаев, а событию -- 32 * 4 случаев. Таким образом,

Если первая карта есть туз, то в колоде осталось 35 карт и среди них только три туза. Следовательно, .

Общее решение задачи нахождения условной вероятности для классического определения вероятности не представляет труда. В самом деле, пусть из n единственно возможных, несовместимых и равновероятных событий событию А благоприятствует m событий. Если событие В произошло, то это означает, что наступило одно из событий, благоприятствующих В. При этом условии событию А благоприятствуют r и только r событий Aj, благоприятствующих АВ. Таким образом,

Точно так же можно вывести, что

Понятно, что

т. е. вероятность произведения двух событий равна произведению вероятности одного из этих событий на условную вероятность другого при условии, что первое произошло.

Теорема умножения применима и в том случае, когда одно из событий А или В есть невозможное событие, так как в этом случае вместе с имеют место равенства и.

Условная вероятность обладает всеми свойствами вероятности. В этом легко убедиться, проверив, что она удовлетворяет всем свойствам, сформулированных в предыдущих параграфах. Действительно, первое свойство выполняется очевидным образом, поскольку для каждого события А определена неотрицательная функция. Если, то

Проверка третьего свойства также не составляет труда и мы предоставляем читателю ее осуществление.

Заметим, что вероятностное пространство для условных вероятностей задается следующей тройкой.

Определение 1. Говорят, что событие А независимо от события В, если имеет место равенство т. е. если наступление события В не изменяет вероятности появления события А.

Если событие А независимо от В, то имеет место равенство

Отсюда находим: т. е. событие В также независимо от А. Таким образом, свойство независимости событий взаимно.

Если события А и В независимы, то независимы также события А и. Действительно, так как

Отсюда мы делаем важное заключение: если события А и В независимы, то независимы также каждые два события.

Понятие независимости событий играет значительную роль в теории вероятностей и в ее приложениях. В частности, большая часть результатов, изложенных в настоящем пособии, получена в предположении независимости тех или иных рассматриваемых событий.

Так, например, ясно, что выпадение герба на одной монете не изменяет вероятности появления герба (решки) на другой монете, если только эти монеты во время бросания не связаны между собой (например, жестко не скреплены). Точно так же рождение мальчика у одной матери не изменяет вероятности появления мальчика (девочки) у другой матери. Это -- события независимые.

Для независимых событий теорема умножения принимает особенно простой вид, а именно, если события A и В независимы, то

Мы обобщим теперь понятие независимости двух событий на совокупность нескольких событий.

Определение 2. События называются независимыми в совокупности, если для любого события из их числа и произвольных из их же числа события и взаимно независимы. В силу предыдущего это определение эквивалентно: при любых

Заметим, что для независимости в совокупности нескольких событий недостаточно их по парной независимости. В этом можно убедиться на следующем простом примере.

Пример С.Н. Бернштейна. Представим себе, что грани тетраэдра окрашены: 1-я -- в красный цвет (A), 2-я -- в зеленый (В), третья -- в синий (С) и 4-я -- во все эти три цвета (AВС). Легко видеть, что вероятность выпадения грани, на которую упадет тетраэдр при бросании, и своей окраске иметь красный цвет равна 1/2: граней четыре и две из них имеют в окраске красный цвет.

события A,В,С, таким образом, попарно независимы.

Однако, если нам известно, что осуществились события В и С, то заведомо осуществилось и событие A, т. е. .

Таким образом, события A,В,С в совокупности зависимы. Таким образом, в общем случае при по определению

(В случае условная вероятность остается неопределенной.) Это позволяет нам перенести автоматически на общее понятие вероятности все определения и результаты настоящего параграфа.

Нередко в жизни мы сталкиваемся с тем, что нужно оценить шансы наступления какого-либо события. Стоит ли покупать лотерейный билет или нет, каков будет пол третьего ребенка в семье, будет ли завтра ясная погода или снова пойдет дождь - таких примеров можно привести бесчисленное множество. В самом простом случае следует разделить число благоприятных исходов на общее число событий. Если в лотерее 10 билетов выигрышных, а всего их 50, то шансы получить приз равны 10/50 = 0,2, то есть 20 против 100. А как поступать в том случае, если есть несколько событий, и они тесно связаны между собой? В этом случае нас будет интересовать уже не простая, а условная вероятность. Что это за величина и как ее можно посчитать - об этом как раз и будет рассказано в нашей статье.

Понятие

Условная вероятность - это шансы наступления определенного события при условии, что другое связанное с ним событие уже произошло. Рассмотрим простой пример с бросанием монетки. Если жеребьевки еще не было, то шансы выпадения орла или решки будут одинаковыми. Но если раз пять подряд монетка ложилась гербом вверх, то согласитесь ожидать 6-го, 7-го, а тем более 10-го повторения такого исхода будет нелогично. С каждым повторным разом выпадения орла, шансы появления решки растут и рано или поздно она-таки выпадет.

Формула условной вероятности

Давайте теперь разберемся с тем, как эта величина рассчитывается. Обозначим первое событие через В, а второе через А. Если шансы наступления В отличны от нуля, то тогда будет справедливым следующее равенство:

Р (А|В) = Р (АВ) / Р (В), где:

  • Р (А|В) - условная вероятность итога А;
  • Р (АВ) - вероятность совместного появления событий А и В;
  • Р (В) - вероятность события В.

Слегка преобразовав данное соотношение получим Р (АВ) = Р(А|В) * Р (В). А если применить то можно вывести формулу произведения и использовать ее при произвольном числе событий:

Р (А 1 , А 2 , А 3 ,…А п) = Р (А 1 |А 2 …А п)*Р(А 2 |А 3 …А п) * Р (А 3 |А 4 …А п)… Р (А п-1 |А п) * Р (А п).

Практика

Чтобы было легче разобраться с тем, как рассчитывается условная рассмотрим парочку примеров. Предположим имеется ваза, в которой находятся 8 шоколадных конфет и 7 мятных. По размерам они одинаковы и наугад последовательно вытаскиваются две из них. Какие будут шансы того, что обе из них окажутся шоколадными? Введем обозначения. Пусть итог А означает, что первая конфета шоколадная, итог В - вторая конфета шоколадная. Тогда получится следующее:

Р (А) = Р (В) = 8 / 15,

Р (А|В) = Р (В|А) = 7 / 14 = 1/2,

Р (АВ) = 8 /15 х 1/2 = 4/15 ≈ 0,27

Рассмотрим еще один случай. Предположим, есть двухдетная семья и нам известно, что, по крайней мере, один ребенок является девочкой.

Какова условная вероятность того, что мальчиков у этих родителей пока нет? Как и в предыдущем случае, начнем с обозначений. Пусть Р (В) - вероятность того, что в семье есть хотя бы одна девочка, Р (А|В) - вероятность того, что второй ребенок тоже девочка, Р (АВ) - шансы того, что в семье две девочки. Теперь произведем расчёты. Всего может быть 4 разных комбинаций пола детей и при этом лишь в одном случае (когда в семье два мальчика), девочки среди детей не будет. Поэтому вероятность Р (В) = 3/4, а Р (АВ) = 1/4. Тогда следуя нашей формуле получим:

Р (А|В) = 1/4: 3/4 = 1/3.

Интерпретировать результат можно так: если бы нам не было б известно о поле одного из детей, то шансы двух девочек были бы 25 против 100. Но поскольку мы знаем, что один ребенок девочка, вероятность того, что в семье мальчиков нет, возрастает до одной третьей.

Пусть А и В – два события, рассматриваемые в данном испытании. При этом наступление одного из событий может влиять на возможность наступления другого. Например, наступление события А может влиять на событие В или наоборот. Для учёта такой зависимости одних событий от других вводится понятие условной вероятности.

Определение. Если вероятность события В находится при условии, что событие А произошло, то получаемая вероятность события В называется условной вероятностью события В . Для обозначения такой условной вероятности используются символы: р А (В ) или р (В / А ).

Замечание 2 . В отличие от условной вероятности, рассматривается и “безусловная” вероятность, когда какие-либо условия наступления некоторого события В отсутствуют.

Пример . В урне 5 шаров, среди которых 3 красных и 2 синих. Поочерёдно из неё извлекают по одному шару с возвратом и без возврата. Найти условную вероятность извлечения во второй раз красного шара при условии, что в первый раз извлечён: а) красный шар; б) синий шар.

Пусть событие А – извлечение красного шара в первый раз, а событие В – извлечение красного шара во второй раз. Очевидно, что р (А ) = 3 / 5; тогда в случае, когда вынутый 1-й раз шар возвращается в урну, р (В )=3/5. В случае же когда вынутый шар не возвращается, вероятность извлечения красного шара р (В ) зависит от того, какой шар был извлечён в первый раз – красный (событие А ) или синий (событие ). Тогда в первом случае р А (В ) = 2 / 4, а во втором (В ) = 3 / 4.

Теорема умножения вероятностей событий, одно из которых совершается при условии совершения другого

Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, найденную в предположении, что первое событие произошло:

р (А ∙ В ) = р (А ) ∙ р А (В ) . (1.7)

Доказательство. Действительно, пусть n – общее число равновозможных и несовместных (элементарных) исходов испытания. И пусть n 1 – число исходов, благоприятствующих событию А , которое наступает вначале, а m – число исходов, в которых наступает событие В в предположении, что событие А наступило. Таким образом, m – это число исходов, благоприятствующих событию В. Тогда получим:

Т.е. вероятность произведения нескольких событий равна произведению вероятности одного из этих событий на условные вероятности других, причём условная вероятность каждого последующего события вычисляется в предположении, что все предыдущие события произошли.

Пример. В команде из 10 спортсменов 4 мастера спорта. По жеребьёвке из команды выбирают 3-х спортсменов. Какова вероятность того, что все выбранные спортсмены – мастера спорта?

Решение. Приведём задачу к “урновой” модели, т.е. будем считать, что в урне, содержащей 10 шаров, имеется 4 красных шара и 6 белых. Из этой урны наудачу извлекаются 3 шара (выборка S = 3). Пусть событие А состоит в извлечении 3-х шаров. Задачу можно решить двумя способами: по классической схеме и по формуле (1.9).

Первый способ, основанный на формуле комбинаторики:

Второй способ (по формуле (1.9)). Из урны последовательно без возвращения извлекаются 3 шара. Пусть А 1 – первый извлечённый шар красный, А 2 – второй извлечённый шар красный, А 3 – третий извлечённый шар красный. Пусть также событие А означает, что все 3 извлечённых шара – красные. Тогда: А = А 1 ∙ (А 2 / А 1) ∙ А 3 / (А 1 ∙ А 2), т.е.

Пример. Пусть из совокупности карточек а, а, р, б, о, т последовательно извлекаются карточки по одной. Какова вероятность получения слова “работа ” при последовательном складывании их в одну строку слева направо?

Пусть В – событие, при котором получается заявленное слово. Тогда по формуле (1.9) получим:

р (В ) = 1/6 ∙ 2/5 ∙ 1/4 ∙ 1/3 ∙ 1/2 ∙ 1/1 = 1/360.

Теорема умножения вероятностей приобретает наиболее простой вид, когда произведение образуется независимыми друг от друга событиями.

Определение. Событие В называется независимым от события А , если его вероятность не меняется от того, произошло событие А или нет. Два события называются независимыми (зависимыми), если появление одного из них не изменяет (изменяет) вероятность появления другого. Таким образом, для независимых событий р(В/ A ) = р (В ) или = р (В ), а для зависимых событий р (В/ A )

Событие. Пространство элементарных событий. Достоверное событие, невозможное событие. Совместные, несовместные события. Равновозможные события. Полная группа событий. Операции над событиями.

Событие - это явление, о котором можно сказать, что оно происходит или не происходит , в зависимости от природы самого события.

Под элементарными событиями , связанными с определенным испытанием, понимают все неразложимые результаты этого испытания. Каждое событие, которое может наступить в результате этого испытания, можно рассматривать как некоторое множество элементарных событий.

Пространством элементарных событий называется произвольное множество (конечное или бесконечное). Его элементы - точки (элементарные события). Подмножества пространства элементарных событий называются событиями.

Достоверным событием называется событие, которое вследствие данного испытания обязательно произойдет; (обозначается E).

Невозможным событием называется такое событие, которое вследствие данного испытания не может произойти ; (обозначается U). Например, появление одного из шести очков во время одного броска игрального кубика - достоверное событие, а появление 8 очков - невозможное.

Два события называются совместными (совместимыми) в данном опыте, если появление одного из них не исключает появления другого.

Два события называются несовместными (несовместимыми) в данном опыте, если они не могут произойти вместе при одном и том же испытании. Несколько событий называются несовместными, если они попарно несовместны.

Начало формы

Конец формы

Событие - это явление, о котором можно сказать, что оно происходит или не происходит , в зависимости от природы самого события. События обозначаются большими буквами латинского алфавита A, B, C,... Любое событие происходит вследствие испытания . Например, подбрасываем монету - испытание, появление герба - событие; достаем лампу из коробки - испытание, она бракованная - событие; вынимаем наугад шарик из ящика - испытание, шарик оказался черного цвета - событие. Случайным событием называется событие, которое может произойти или не произойти во время данного испытания. Например, вынимая наугад одну карту из колоды, вы взяли туз; стреляя, стрелок попадает в цель. Теория вероятности изучает только массовые случайные события. Достоверным событием называется событие, которое вследствие данного испытания обязательно произойдет; (обозначается E). Невозможным событием называется такое событие, которое вследствие данного испытания не может произойти ; (обозначается U). Например, появление одного из шести очков во время одного броска игрального кубика - достоверное событие, а появление 8 очков - невозможное. Равновозможные события - это такие события, каждое из которых не имеет никаких преимуществ в появлении чаще другого во время многочисленных испытаний, которые проводятся с одинаковыми условиями. Попарно несовместимые события - это события, два из которых не могут произойти вместе. Вероятность случайного события - это отношение числа событий, которые благоприятствуют этому событию, к общему числу всех равновозможных несовместимых событий: P(A) = где A - событие; P(A) - вероятность события; N - общее число равновозможных и несовместимых событий; N(A) - число событий, которые благоприятствуют событию A. Это - классическое определение вероятности случайного события. Классическое определение вероятности имеет место для испытаний с конечным числом равновозможных результатов испытания. Пусть сделано n выстрелов по мишени, из которых оказалось m попаданий. Отношение W(A) = называется относительной статистической частотой наступления события A. Следовательно, W(A) - статистическая частота попадания.

При проведении серии выстрелов (табл.1) статистическая частота будет колебаться около определенного постоянного числа. Это число целесообразно принять за оценку вероятности попадания.

Вероятностью события A называется то неизвестное число P, около которого собираются значения статистических частот наступления события A при возрастании числа испытаний.

Это - статистическое обозначение вероятности случайного события.

Операции над событиями
Под элементарными событиями, связанными с определенным испытанием, понимают все неразложимые результаты этого испытания. Каждое событие, которое может наступить в результате этого испытания, можно рассматривать как некоторое множество элементарных событий. Пространством элементарных событий называется произвольное множество (конечное или бесконечное). Его элементы - точки (элементарные события). Подмножества пространства элементарных событий называются событиями. Все известные отношения и операции над множествами переносятся на события. Говорят, что событие A является частным случаем события B (или B является результатом A), если множество A является подмножеством B. Обозначают это отношение так же, как для множеств: A ⊂ B или B ⊃ A. Таким образом, отношение A ⊂ B означает, что все элементарные события, входящие в A, входят также в B, то есть при наступлении события A наступает также событие B. При этом, если A ⊂ B и B ⊂ A, то A = B. Событие A, которое происходит тогда и только тогда, когда событие A не происходит, называется противоположным событию A. Поскольку в каждом испытании происходит одно и только одно из событий - A или A, то P(A) + P(A) = 1, или P(A) = 1 − P(A). Объединением или суммой событий A и B называется событие C, которое происходит тогда и только тогда, когда или происходит событие A, или происходит событие B, или происходят A и B одновременно. Это обозначается C = A ∪ B или C = A + B. Объединением событий A 1 , A 2 , ... A n называется событие, которое происходит тогда и только тогда, когда происходит хотя бы одно из данных событий. Обозначается объединение событий A 1 ∪ A 2 ∪ ... ∪ A n , или A k , или A 1 + A 2 + ... + A n . Пересечением или произведением событий A и B называется событие D, которое происходит тогда и только тогда, когда события A и B происходят одновременно, и обозначается D = A ∩ B или D = A × B. Совмещением или произведением событий A 1 , A 2 , ... A n называется событие, которое происходит тогда и только тогда, когда происходит и событие A 1 , и событие A 2 , и т.д., и событие A n . Обозначается совмещение так: A 1 ∩ A 2 ∩ ... ∩ A n или A k , или A 1 × A 2 × ... × A n .

Тема № 2 . Аксиоматическое определение вероятности. Классическое, статистическое, геометрическое определение вероятности события. Свойства вероятности. Теоремы сложения и умножения вероятностей. Независимые события. Условная вероятность. Вероятность наступления хотя бы одного из событий. Формула полной вероятности. Формула Байеса

Численная мера степени объективной возможности наступления события называется вероятностью события. Это определение, качественно отражающее понятие вероятности события, не является математическим. Чтобы оно стало таким, необходимо определить его качественно.

Согласно классическому определению вероятность события А равна отношению числа случаев, благоприятствующих ему, к общему числу случаев, то есть:

Где P(A) – вероятность события А.

Число случаев благоприятствующих событию А

Общее число случаев.

Статистическое определение вероятности:

Статистической вероятностью события А называется относительная частота появления этого события в произведённых испытаниях, то есть:

Где - статистическая вероятность события А.

Относительная частота(частость) события А.

Число испытаний, в которых появилось события A

Общее число испытаний.

В отличие от «математической» вероятности , рассматриваемой в классическом определении, статистическая вероятность является характеристикой опытной, экспериментальной.

Если есть доля случаев, благоприятствующих событию А, которая определяется непосредственно, без каких-либо испытаний, то есть доля тех фактически произведённых испытаний, в которых событие А появилось.

Геометрическое определение вероятности:

Геометрической вероятностью события А называется отношение меры области благоприятствующей появлению события А, к мере всех области, то есть:

В одномерном случае:


Следует оценить вероятность попадания точки на CD/

Оказывается эта вероятность не зависит от места нахождения CD на отрезке АВ, а зависит лишь от его длины.


Вероятность попадания точки не зависит ни от форм, ни от месте нахождения В на А, а зависит лишь от площади данного сегмента.

Условная вероятность

Вероятность называется условной , если она вычисляется при определённых условиях и обозначается:

Это вероятность события А. Вычисляется при условии, что событие В уже произошло.

Пример. Производим испытание, извлекаем две карты из колоды: Первая вероятность является безусловной.

Вычисляем вероятность извлечения туза из колоды:

Вычисляем появление 2-тузув из колоды:

А*В – совместное появление событий

теорема умножения вероятностей

Следствие:

Теорема умножения для совместного появления событий имеет вид:

То есть каждая последующая вероятность вычисляется с тем учётом, что все предыдущие условия уже произошли.

Независимость события:

Независимыми называются 2 события, если появление одного не противоречит появлению другого.

Например, если тузы из колоды извлекаются повторно, тогда они между собой независимы. Повторно, то есть карту посмотрели и вернули обратно в колоду.

Совместные и несовместные события:

Совместными называются 2 события, если появление одного из них не противоречит появлению другого.

Теорема сложения вероятностей совместных событий:

Вероятность появления одного из двух совместных событий равна сумме вероятностей этих событий без их совместного появления.

Для трёх совместных событий:

Несовместными называются события, если никакие два из них не могут появиться одновременно в результате однократного испытания случайного эксперимента.

Теорема: Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий.

Вероятность суммы событий:

Теорема сложения вероятностей:

Вероятность суммы конечного числа несовместных событий равна сумме вероятностей этих событий:

Следствие 1:

Сумма вероятностей событий, образующих полную группу равна единице:

Следствие 2:

Замечание: Следует подчеркнуть, что рассмотренная теорема сложения применима только для несовместных событий.

Вероятность противоположных событий:

Противоположными называются два единственно возможных события, образующих полную группу. Одно из двух противоположных событий обозначено через А , другое – через .

Пример: Попадание и промах при выстреле по цели – противоположные события. Если A – попадание, то – промах.

Теорема: Сумма вероятностей противоположных событий равна единице:

Замечание 1: Если вероятность одного из двух противоположных событий обозначена через p, то вероятность другого события обозначают через q Таким образом, в силу предыдущей теоремы:

Замечание 2: При решении задач на отыскание вероятности события A часто выгодно сначала вычислить вероятность события , а затем найти искомую вероятность по формуле:

Вероятность появления хотя бы одного события:

Допустим, что в результате эксперимента может появиться одно, какая-то часть или ни одно событие.

Теорема: Вероятность появления хотя бы одного события из совокупности независимых событий равна разности между единицей и их вероятностью не появления событий .

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: